On a conjecture of Kierstead

نویسنده

  • Nikolai N. Kuzjurin
چکیده

The aim of this note is to disprove a conjecture of H. Kierstead 5].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induced Cycles and Chromatic Number

We prove that, for any pair of integers k, l ≥ 1, there exists an integerN(k, l) such that every graph with chromatic number at least N(k, l) contains either Kk or an induced odd cycle of length at least 5 or an induced cycle of length at least l. Given a graph with large chromatic number, it is natural to ask whether it must contain induced subgraphs with particular properties. One possibility...

متن کامل

A Short Proof of the Hajnal-Szemerédi Theorem on Equitable Colouring

An equitable k-colouring of a graph G is a proper k-colouring, for which any two colour classes differ in size by at most one. Equitable colourings naturally arise in some scheduling, partitioning, and load-balancing problems [1, 15, 16]. Pemmaraju [13] and Janson and Ruciński [6] used equitable colourings to derive deviation bounds for sums of random variables that exhibit limited dependence. ...

متن کامل

∆-critical Graphs with Small High Vertex Cliques

We prove thatKχ(G) is the only vertex critical graphG with χ(G) ≥ ∆(G) ≥ 6 and ω(H(G)) ≤ ⌊ ∆(G) 2 ⌋ − 2. Here H(G) is the subgraph of G induced on the vertices of degree at least χ(G). Setting ω(H(G)) = 1 proves a conjecture of Kierstead and Kostochka.

متن کامل

Every 4-Colorable Graph With Maximum Degree 4 Has an Equitable 4-Coloring

Chen, Lih, and Wu conjectured that for r ≥ 3, the only connected graphs with maximum degree at most r that are not equitably r-colorable are Kr,r (for odd r) and Kr+1. If true, this would be a joint strengthening of the Hajnal-Szemerédi Theorem and Brooks' Theorem. Chen, Lih, and Wu proved that their conjecture holds for r = 3. In this paper we study properties of the hypothetical minimum count...

متن کامل

On a lexical tree for the middle-levels graph problem

A conjecture of I. Hável asserts that all middle-levels graphs Mk of the (2k + 1)-cubes possess Hamilton cycles. In this work, a tree containing all vertices of certain reduced graphs of the Mk s is introduced and indicated via the Kierstead-Trotter lexical matchings, easing the algorithmic aspects of determining such Hamilton cycles, and here applied to the explicit presentation of some of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007